
Journal of Statistical Physics, Vol. 128, No. 4, August 2007 ( C© 2007 )
DOI: 10.1007/s10955-007-9333-x

Lifshitz Tails for Acoustic Waves in Random Quantum
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In this study, we consider acoustic operators in a random quantum waveguide. Precisely
we deal with an elliptic operator in the divergence form on a random strip. We prove
that the integrated density of states of the relevant operator exhibits Lifshitz behavior at
the bottom of the spectrum. This result could be used to prove localization of acoustic
waves at the bottom of the spectrum.
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1. INTRODUCTION

The study of quantum waves on quantum waveguide has gained much interest
and has been intensively studied during the last years for their important physical
consequences. The main reason is that they represent an interesting physical effect
with important applications in nanophysical devices, but also in flat electromag-
netic waveguide. (33)

Exner et al. have done many works in this field. They have obtained results
in different contexts we quote. (9,10,11,12) Also in Refs. 19, 26 we have research
conducted in this area; the first is given for the discrete case.

We notice that originally studied in the context of quantum mechanical elec-
trons. In the present work we are inspired from the model given in Kleespies
and Stollmann work, (26) for the Laplacian operator to study Lishitz tails in the
context of classical waves in random quantum wave-guides. In spite of the clear
similarities between localization of quantum mechanical electron localization and
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localization of classical waves, there are some significant differences, classical
waves are harder to localize. (17) Indeed, a local change in a homogeneous medium
cannot create localized eigenfunction for classical waves operators but it can cer-
tainly create localized states for Schrödinger operators i.e quantum mechanical
models to study electron waves in disordered media. For random Schrödinger
operators it is proved(26) that in the two dimensional case band edge localization
occurs on the bottom of the spectrum. It is natural to ask whether the same kind of
phenomenon can appear for classical waves such as acoustic waves (The answer
is the main object of this work, and it is proved to be positive).

We consider the divergence operator of the following form,

H = −∇ρ−1 · ∇ (1.1)

Here ρ is 2 × 2 diagonal matrix

ρ =
(

� 0
0 ρ0

)
(1.2)

We assume that ρ0 is a positive constant and � is a bounded measurable function
which represents the density of the medium where the wave propagates on the x1

direction. We assume

µ0 ≤ � ≤ ρ0;

for some positive constante µ0.
The great interest of this operator, both from the physical and the mathemati-

cal point of view, is quite obvious and known. (42) Below we give a brief description
of the origin of this operator.

1.1. The Acoustic Operator

An acoustic wave is governed by the following system:

(S1)

⎧⎪⎪⎨
⎪⎪⎩

κ
∂p

∂t
= −∇ · u

�
∂u

∂t
= −∇ p.

Here at time t and position x , p = p(x, t) represents the pressure, while u(x, t)
represents the velocity, κ = κ(x) is the compressibility and �(x) is the mass density
of the media at point x . From (S1) one deduces that p satisfies the equation

κ
∂2 p

∂t2
= ∇ · 1

�
∇ p. (1.3)
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We define the momentum potential ψ = ψ(x, t) by �u = −∇ψ . So, it follows
from (S1) that ψ satisfies,

κ
∂p

∂t
= ∇ · 1

�
∇ψ ; and

∂ψ

∂t
= p. (1.4)

Therefore ψ obeys the following second order partial differential equation

κ
∂2ψ

∂t2
= ∇ · 1

�
∇ψ. (1.5)

Motivated by Eqs. (1.3), (1.4) and (1.5), we set

H = −∇ · 1

�
· ∇ =

d∑
i=1

∂xi

1

�(x)
∂xi . (1.6)

H is called the acoustic operator. It is a partial differential operator which is
elliptic under more assumptions on �. When we deal with random media we note
the density by �ω and the operator by Hω.

1.2. The Integrated Density of States

As this paper is devoted to the study of the behavior of the integrated density
of states, we recall that it is defined as follows: We note by H� the restriction of
H to a cube � ⊂ R

d , with self-adjoint boundary conditions. As H is elliptic, the
resolvent of H� is compact and consequently, the spectrum of H� is discrete and
made of isolated eigenvalues of finite multiplicity. (41) We define

N�(E) = 1

| � | · #{eigenvalues of H� ≤ E}. (1.7)

Here |�| is the volume of � in the Lebesgue sense and #E is the cardinal of E .
It is shown that the limit of N�(E) when � tends to R

d exists and is inde-
pendent of the boundary conditions. It is called the integrated density of states
of Hω (IDS as an acronym) and noted by N (E). See Ref. 22, 40.

The question we are interested in here deals with the behavior of N at the
bottom of the spectrum of H . Let us give a brief history of this subject. In 1964,
Lifshitz (34) argued that, for a Schrödinger operator of the form H = −� + Vω,

there exists c1, c2, α > 0 such that N (E) satisfies the asymptotic:

N (E) � c1 exp(−c2(E − E0)−α), E → E0. (1.8)

Here E0 is the bottom of the spectrum of H . The behavior (1.8) is known as
Lifshitz tails (for more details see part IV.9.A of Ref. 40), and α is the Lifshitz
exponent. Usually such an exponent is of the form − d

2 , where d is the dimension.
We notice that the Lifshitz behavior is among the properties characterizing random
operators.
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Lifshitz also expected (1.8) at fluctuating edges inside the spectrum. We refer
to this asymptotic by “internal Lifshitz tails”.

The principal results known about Lifshitz tails are mainly shown for
Schrödinger operators on the whole space (for continuous and discrete cases).
(See Refs. 2, 22, 28, 40 and references therein).

Lifshitz tails for an operator of type (1.1), were the subject of previous
works, (35,36) where we obtain the behavior of N at the internal band edges of the
spectrum of (1.1). For the bottom of the spectrum it is known that when the operator
(1.1), acts on the whole space, the IDS has a weyl asymptotic and decreases only
polynomially. (37)

In Ref. 20, the authors derive regularity properties for the density of states in
the Anderson model on a one-dimensional strip for potentials with singular con-
tinuous distributions and show that the density of states is infinitely differentiable.

An investigation of a family of Dirichlet Laplacians on randomly dented
strips in R

2; is considered in Ref. 26. They prove dense point spectrum with
exponentially localized eigenfunctions near its fluctuation boundary at the bottom
of the spectrum. The proof is related to the Lifshitz tails on this region of the
spectrum.

1.3. Results and Discussion

1.3.1. The Model

Let D0 be the strip R × (0, Dmax). Let (ωγ )γ∈Z be a family of independent and
identically distributed random variables taking values in [0, d] for 0 < d < Dmax.
We denote by (P,F ,�) the corresponding probability space and assume that
(A.1)

lim
ε→0

log log(P{ω0 ∈ (0, ε)})
log ε

= 0, (1.9)

and the mean value m = E(ω0) = ∫ xdP > 0.
The random strip is defined as follows: The deviation of the width of the

random strip from Dmax is given by the γ -th coordinate ωγ of ω ∈ �. For the family
of points in R

2; {(γ, (Dmax − ωγ ))γ∈Z} we consider p(ω): R → [Dmin, Dmax] as a
polygon joining these points. Let

Dω = {(x1, x2) ∈ R
2; 0 < x2 < p(ω)(x1)}.

This domain is drawn in the Picture 1:
Let H(ρ) be the following quadratic form defined as follow: for u ∈

H 1
0 (Dω) = D(H(ρ))

H(ρ)[u, u] =
∫

Dω

ρ−1∇u(x)∇u(x) dx .



Lifshitz Tails for Acoustic Waves in Random Quantum Waveguide 1097

Picture 1

Notice that here we have a family of quadratic forms acting on different domains.
There is a family of random maps (ϕω) that transform these different domains Dω to
the non-random domain, D0 by dilatation (a change of variables). This transforms
the randomness from the domain say to ρ which we denote by ρω. Thus a random
medium will be modeled by an ergodic random self-adjoint operator. Indeed the
family of maps yield an equivalent quadratic form with domain H 1

0 (D0)

H(ρω)[u, u] =
∫

D0

ρ−1
ω ∇u(x)∇u(x) dx .

H(ρω) is a symmetrical, closed and positive quadratic form. Let Hω be the re-
striction of the operator given by (1.1) to the domain Dω with Dirichlet boundary
conditions. Hω is defined to be the self-adjoint operator associated to H(ρω). (41)

Notice that ρω = ρ(ϕ−1
ω ), consequently if we consider τγ the shift function i.e

(τγ u)(x1, x2) = u(x1 − γ, x2). We assume that � is Z-periodic in x1. This ensures
that Hω is a measurable family of self-adjoint operators and ergodic. (22,40) Indeed,
(τγ )γ∈Z is a group of unitary operators on L2(D0) and for γ ∈ Z we have

τγ Hωτ−γ = Hτγ ω.

According to Refs. 22, 40 we know that there exists �,�pp, �ac and �sc closed
and non-random sets of R such that � is the spectrum of Hω with probability
one and such that if σpp (respectively σac and σsc) design the pure point spectrum
(respectively the absolutely continuous and singular continuous spectrum) of Hω,
then �pp = σpp, �ac = σac and �sc = σsc with probability one.
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2. RESULTS AND DISCUSSIONS

2.1. The Result

We notice that as P{ω0 ∈ (0, ε)} �= 0, one gets that Dω contains rectangular
boxes of length k in the x1 direction and width Dmax − ε for any d > ε > 0 and k
large P-almost surely. Using the fact that µ0 ≤ � ≤ ρ0 and the min-max principle
by a comparison to the Laplacian and using the form of ρ one gets that for P

almost every ω ∈ �.

inf(�) = E0 = π2

ρ0 D2
max

. (2.10)

Our study is in a neighborhood of this point.

Theorem 2.1. Under the assumption (A.1), the integrated density of states of
Hω satisfies:

lim
ε→0

log(| log(N (E0 + ε))|)
log ε

= −1

2
.

Remark 2.2.

• By considering perturbation of a periodic medium (See picture 2) with �

is Z-periodic in the x1-direction one can get a spectrum with open gaps.
Under adequate assumptions, the result is still true for internal band edges.
This could be done using the periodic approximations and the reduction
procedure. (28,35,36)

• We notice that here we have the Lifshitz exponent independent of � com-
pared to the long range and short range cases. (35,36) This is due to the fact
that in the present case lifshitz exponent is due to the geometry of the the
wave guide.

• In the present case we prove Lifshitz tails at the bottom of the spectrum.
We mention that in the case when the the operator is considered on L2(Rd ),
the bottom of the spectrum is 0, and the IDS decreases only polynomially
fast at 0, see Refs. 31, 39.

Outline of the Proof: To prove Theorem 2.1, we prove a lower and an upper
bounds on N (E0 + ε). The upper and lower bounds are proven separately and
based on the following result ( Theorem 5.25 p. 110 of Ref. 40).

1

2k + 1
E
{

N
(
H D

�k
(ω), E0 + ε

)}≤ N (E0 + ε) ≤ 1

2k + 1
E
{

N
(
H N

�k
(ω), E0 + ε)

}
.

(2.11)
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Picture 2

Here H D
�k

(ω) is the operator defined by (1.1) restricted to �k × (0, Dmax) ∩ D(ω)
with Dirichlet boundary condition also on the verticals parts, while H N

�k
(ω) when

we consider Neumann boundary condition on the vertical parts. We notice that
(2.11) yields that we have to estimate an upper bound of

1

2k + 1
N
(
H N

�k
(ω), E

) · P(E0
(
H N

�k
(ω) ≤ E0 + ε

)
.

The first factor can easily estimated by the weyl estimation (C(E0 + ε)
1
2 ), while

for the second we follow the standard perturbation domain arguments laid down
in Ref. 28, 26.

To estimate the probability from above it is sufficient to use the fact that
eigenvalues near E0 are due to the littleness of random variables, which yields to
the estimation of this rare event. We notice that by this, one follows the technique
used in Ref. 26.

2.2. Application

Theorem 2.1 can be considered as a first step toward physically-motivated
applications. One of them is the study of the so-called localization. This could be
done under some additional assumptions on the behavior of the random variables
in the vicinity of 0 or d.

We note that localization was initially given a spectral interpretation:
pure point spectrum with exponentially decaying eigenfunctions (exponential
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localization). Intuitive physical notion of localization has also dynamical inter-
pretation: the moments of a wave packet, initially localized both in space and in
energy, should remain uniformly bounded under time evolution.

All the proofs of localization, except in the discrete case(1,19) for the mul-
tidimensional case, use the method of the multiscale analysis. This method was
used for the first time by Fröhlich and Spencer (7) and Fröhlich, Martinalli, Spencer
and Scoppolla, (14) at the beginning of the eighties and it knew many extensions
and simplifications to lead to the form described in Ref. 8. This analysis makes it
possible to obtain information on the operator in the whole space, starting from
information on the operator restricted to cubes of finite size, (see (P1) and (P2)
below). (8) Although it originally only gave exponential localization, (2,8,23,24) it was
later shown to also yield dynamical localization by Germinet and De Bièvre, (15)

strong dynamical localization for moments up to some finite order is given in
Ref. 3. The bootstrap multiscale analysis of Germinet and Klein in Ref. 16 yield
strong dynamical localization up to all orders in the Hilbert-Schmidt norm.

For the adoption of this technique to random strip see Ref. 26, 42. For the
first initial length scale estimate it is given below:

Theorem 2.3. Let θ ∈ R
2 and E0 > 0 be the bottom of the spectrum of Hω.

Assume (A.1) hold. Then for any α > 1, integer p > 0, for k ∈ N sufficiently
large, one has

(P1) P

({
dist

(
σ (H θ

ω,�kα
), E0

) ≤ 1

k

})
≤ 1

k p
.

Where H θ
ω,�k

is the operator Hω restricted to this box with θ -quasiperiodic bound-
ary condition i.e with boundary condition ϕ(x1 + γ, x2) = eiγ ·θϕ(x1, x2) for any
γ ∈ 2kZ.

Theorem 2.3 is a consequence of Theorem 2.1. Indeed, using the Combes-
Thomas estimate and the decomposition of resolvent we get (P1). We omit details
and refer the reader to Refs. 38, 43.

If we assume that Hω satisfies a Wegner estimate (13,42) i.e for some α > 0
and n > 0 for E ∈ R for k ≥ 1 and 0 < ε < 1, there exists C(E) > 0 such that
one has

(P2) P
({

dist
(
σ
(
H θ

ω,�k

)
, E
) ≤ ε

}) ≤ C(E) · |�k |α · εn; (2.12)

then, for E0 using Theorem 2.3 for θ = 0, we obtain the initial estimate to start a
multi-scale analysis. This proves that the spectrum of Hω is exponentially localized
in some interval around the energy E0 i.e that in some neighborhood of E0

eigenfunctions associated to energies in that interval are exponentially-localized.
More precisely we have
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Theorem 2.4. Let Hω be as in (1.1) and restricted to Dω. We assume that (A.1)
and (P2) hold. There exists ε0 > 0 such that

(i) � ∩ [E0, E0 + ε0] = �pp ∩ [E0, E0 + ε0].
(i i) an eigenfunction corresponding to an eigenvalue in [E0, E0 + ε0] de-

cays exponentially.
(i i i) for all p > 0,

E
{

sup
t>0

∣∣∣∣∣∣X ∣∣peit Hω P[E0,E0+ε0](Hω)χK

∣∣∣∣} < +∞.

Here PI (Hω) is the spectral projection on the interval I, χK is the characteristic
function of K , K is a compact of R

d and X is the position operator.

To comment upon Theorem 2.4, let us consider the wave equation:

∂2u

∂t2
= Hωu. (2.13)

The solution of (2.13) is given(42) by

u(t, ·) = cos(t
√

Hω)u0 + sin(t
√

Hω)u1,

where u0 = u(0, ·) and
√

Hωu1 = (∂t u)(0, ·) denote the initial data.
A localized acoustic wave should be a finite energy solution of (2.13) with

the property that almost all the wave’s energy remains in a fixed bounded region
of space at all times. Thus, if u0 and u1 are linear combinations of exponentially
decaying eigenfunctions, u(t) will be concentrated in some fixed ball for all times
and the respective waves are localized.

By this, the result of Theorem 2.3 and therefore that of Theorem 2.4 is
related to the behavior of the integrated density of states in the neighborhood of
the so-called fluctuation boundary E0. (27,40,43)

3. PRELIMINARY

Let us start this section by transforming the perturbation of the medium to a
perturbation on the operator.

For k ∈ 2N + 1 and γ ∈ Z, we set �k(γ ) = (γ − k
2 , γ + k

2 ) and �k = �k(0).
Let f : �k → [Dmin, Dmax]. For 0 ≤ t < inf�k f be a measurable function. We
consider the bounded domain of R

2;

Dt,k = {(x1, x2); x1 ∈ �k, 0 < x2 < f (x1) − t}.
Remark 3.1. By the notation given at the beginning of this section we have

Dω = D0,∞
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for

fω: R → [Dmin, Dmax]

x1 
→
∑
γ∈Z

uγ

and uγ is the segment:

[γ, γ + 1] → [Dmin, Dmax]

x1 
→ (ωγ+1 − ωγ )x1 + Dmax − γωγ+1 − (1 + γ )ωγ

We restrict our operator defined by (1.1) to L2(Dt,k) with Dirichlet boundary
conditions. We denote it by Ht,k . It is a self-adjoint operator and is considered
as the Friedrichs extension associated to the following positive and symmetric
quadratic form:

Ht,k[u, u] =
∫

Dt,k

ρ−1∇u∇u dx ; u ∈ C∞
0 (Dt,k).

As H is an elliptic operator, Ht,k is with compact resolvent hence, it has a purely-
discrete spectrum. Let us denote its eigenvalues by

0 < E0(t, k) ≤ E1(t, k) ≤ · · · ≤ En−1(t, k) ≤ En(t, k) ≤ · · · .
Notice that for any t ≥ 0 we have H 1

0 (Dt,k) ⊂ H 1
0 (D0,k) hence we have the follow-

ing relation for the forms in L2(D0,k); H0,k ≤ Ht,k . This entails that for any n ∈ N

one gets that En(0, k) ≤ En(t, k). The following Lemma gives a lower bound of
distance between those eigenvalues.

Lemma 3.2. For any (k ∈ (2N + 1) and n ∈ N, one has

En(t, k) − En(0, k) ≥ 2t

ρ0 · D2
max

.

Proof: For λ << 1, we set D̃λ,k = {(x1, x2); x1 ∈ �k, 0 < x2 < (1 − λ) f (x1)}.
We notice that D0,k = D̃0,k . Let

ψλ: D0,k → D̃λ,k

(x1, x2) 
→ (x1, (1 − λ)x2).

Now consider the following eigenvalue problem on L2(D̃λ,k).

HD̃λ,k
ϕn,λ = Ẽn(λ, k)ϕn,λ; ϕn,λ ∈ H 1

0 (D̃λ,k) (3.14)
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and the quadratic form

Q̃λ =
∫

D̃λ,k

u
(
ψ−1

λ (x)
)
v
(
ψ−1

λ (x)
)

dx =
∫

D0

u(x)v(x)(1 − λ) dx

= (1 − λ)〈u, v〉, with domain H1
0(D0). (3.15)

This leads to a scalar product in L2(D̃λ,k). Let us consider the following form with
domain H 1

0 (D0) which corresponds to H restricted to D̃λ,k ;

H̃λ =
∫

D̃λ,k

ρ−1
(
ψ−1

λ (x)
)∇u

(
ψ−1

λ (x))∇v(ψ−1
λ (x)

)
dx

=
∫

D0

(
1

�
∂x1 u∂x1v + 1

ρ0(1 − λ)2
∂x2 u∂x2v

)
(1 − λ) dx .

This results in the following operator

H̃λ = −(1 − λ)

(
∂x1

1

�
∂x1 + 1

ρ0(1 − λ)2
∂2

x2

)

with domain H 1
0 (D0). This transform the Eq. (3.14) as follows

−(1 − λ)

(
∂x1

1

�
∂x1 + 1

ρ0(1 − λ)2
∂2

x2

)
ϕn,λ = Ẽn(λ, k)(1 − λ)ϕn,λ; (3.16)

which it self yields the following equation

−
(

∂x1

1

�
∂x1 + 1

ρ0(1 − λ)2
∂x2

2

)
ϕn,λ = Ẽn(λ, k)ϕn,λ. (3.17)

So, we deal with an analytic family of operators

Ḧλ = −
(

∂x1

1

�
∂x1

)
− 1

ρ0(1 − λ)2
∂2

x2
; |λ| � 1. (3.18)

With domain H 1
0 (D0).

When we dervive both sides of the analogue of the Eq. (3.18) for the forms
with respect to λ, one entails that for any n ∈ N

∗

Ẽ ′
n(λ, k) = 〈Ḧ ′

λϕn,λ, ϕn,λ〉 (3.19)

≥ 2

ρ0(1 − λ)3
〈∂x2ϕn,λ, ∂x2ϕn,λ〉 (3.20)

= 2

ρ0(1 − λ)3
‖∂x2ϕn,λ‖2, (3.21)
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Using the Poincaré inequality, (4) we obtain that

Ẽ ′
n(λ, k) ≥ 4

ρ0 · D2
max(1 − λ)3

; |λ| � 1. (3.22)

As Dt,k ⊂ D̃ t
Dmax

, we get

En(t, k) ≥ Ẽn

(
t

Dmax
, k

)
. (3.23)

Taking into account the fact that D0,k = D̃0,k we get that for any n ∈ N,

En(0, k) = Ẽ(0, k).

This and (3.23) yield that

En(t, k) − En(0, k) ≥ Ẽn

(
t

Dmax
, k

)
− Ẽn(0, k)

≥
∫ t

Dmax

0
E ′

n(λ, k)dλ.

≥
∫ t

Dmax

0

4

ρ0 · D2
max(1 − λ)3

dλ

= 2

ρ0 · (Dmax − t)2
− 2

ρ0 · D2
max

= 2 · t

ρ0 · D2
max

.

�

Theorem 3.3. (Feynman Hellman Theorem) Let H (s) be a one parameter family
of self-adjoint operators for s ∈ I , a neighborhood of zero supposes that H (s) has
a simple eigenvalue E(s) ∈ C1(I ) with eigenfunction φ(s) ∈ C1(I ). We have

d E

ds
(s) =

〈
φ(s),

(
d H

ds
(s)

)
φ(s)

〉
.

Proof: Using the eigenfunction equation one gets that for any s ∈ I

〈φ(s),
(
E(s) − H (s)

)
φ(s)〉 = 0.

Differentiate each side of the last equation. This, with the fact that〈
dφ

ds
(s),

(
E(s) − H (s)

)
φ(s)

〉
= 0,

and similarly for the conjugate term. As ‖φ‖ = 1 one gets the result from the term

involving
d

ds
(H (s) − E(s)). �
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Let

Db
λ,k = {(x1, x2); x1 ∈ �k, 0 < x2 < Dmax − λb(x1)}.

With, b: �k → [Dmin, Dmax] supported in �k and once differentiable.
Let H b

�,k , be the operator given by (1.1) restricted to Db
λ,k , with Neumann

boundary conditions on the part in ∂�k × [0, Dmax] and Dirichlet boundary con-
ditions for the remaining part. Using an analogous map as ψλ, one transforms
Db

λ,k to D0,k = �k × [0, Dmax]. As done previously, this produces a family of
operators on L2(D0), having a sequence (Eb

n (λ, k))n∈N, of purely-discrete spectra.
The following result deals with the first eigenvalue.

Proposition 3.4. There exists K > 0 such that

(
Eb

0

)′
(0, k) ≥ K · 1

|�k |
∫

�k

b(x1) dx1. (3.24)

Proof: Let us consider the trivial function

ϕλ(x1, x2) =
(

x1,
Dmax − λb(x1)

Dmax
x2

)
;

which transforms D0,k to Db
λ,k . By an analogous way as we did previously for the

proof of Lemma 3.2 we get the following form on L2(D0,k)

Qλ[u, v] =
∫

D0,k

u(x)v(x)
Dmax − λb(x1)

Dmax
dx,

and

Hλ[u, v] =
∫

Db
λ,k

ρ−1
(
ϕ−1

λ

)
(x)∇u

(
ϕ−1

λ (x)
)∇v

(
ϕ−1

λ (x)
)

dx ;

=
∫

D0,k

(
1

�(x)

(
∂x1 u(x)∂x1v(x)+ λb′(x1)x2

Dmax − λb(x1)
(∂x1 u∂x2v + ∂x2 u∂x1v)(x)

)

+ 1

ρ0

(
Dmax

Dmax−λb(x1)

)2

∂x2 u∂x2v(x)

)
Dmax − λb(x1)

Dmax
dx

acting on H 1(�k) ⊗ H 1
0 (0, Dmax). The associated operator which we denote by

Hλ has a unique ground state, uλ satisfying

Hλuλ = E0(λ, k)Mλuλ, (3.25)
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here Mλ is the multiplication by
Dmax − λb(x1)

Dmax
. We set vλ = M

1
2
λ uλ which trans-

forms (3.25) on

M
− 1

2
λ HλM

− 1
2

λ vλ = Eb
0 (λ, k)vλ.

This gives a new eigenvalue problem for H̆λ ≡ M
− 1

2
λ HλM

− 1
2

λ . H̆λ can be seen as
the self-adjoint operator associated with the quadratic form

H̆λ[u, v] = Hλ

[
M

− 1
2

λ u, M
− 1

2
λ u

]
.

Using Feynman Hellman Theorem, one gets that

E ′
0(0, k) = (H̆0)′[u0, u0].

Here u0 is the unique normalized ground state of H̆0.
Using the min-max principle and the fact

Eb
0 (λ, k) = inf

{u∈H 1(�k )⊗H 1
0 (0,Dmax), ‖u‖=1}

H̆λ[u, u],

one gets that u0 has to minimize h[u, u] where h is the form associated with the
Laplacian on the domain D0,k . We notice that here one deals with the bottom of
the spectrum. Such problem is studied in Refs. 5, 29 for acoustic operators, and
in Ref. 30 for more general divergence form operators. This gives that u0 is given
in term of the ground state for the free Laplacien operator which itself is already
known and given by

u0(x1, x2) =
√

2

Dmax|�k | sin

(
πx2

Dmax

)
. (3.26)

This yields that

E ′
0(0, k) =

∫
D0

ρ−1
ω

(
b′(x1)

Dmax
(∂x1 u0(x))2 + 2b′(x1)x2

Dmax
(∂x1 u0∂x2 u0)(x)

)

+ 2b(x1)

ρ0 · Dmax
(∂x2 u0)2(x) dx

≥ 1

ρ0 · Dmax

∫
D0

2b(x1)(∂x2 u0)2(x) dx

≥ K
1

|�k |
∫

�k

b(x1) dx1.

�

The following result sets out to estimate the remainder term in the Taylor
expansion of Eb

0 (λ, k). This is related to the Taylor expansion of H̆λ. It is based
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on the study of an analytic family of perturbation and given on a more general
context in Sec. 7 of Ref. 18.

Proposition 3.5. Refs. 18, 26 Under our assumption there exits κ = κ(Dmax, b)
and K > 0 such that for any �k such k ≥ Dmax√

3
and 0 ≤ λ ≤ κ

k2 we have

∣∣Eb
0 (λ, k) − E0 − λ

(
Eb

0

)′
(0, k)

∣∣ ≤ Kπ2

4κ2
· k2 · λ2. (3.27)

Here E0 is the lowest eigenvalue of the operator Hω and given by (2.10)

The idea of the proof of the last proposition as it was said above is based on
the Taylor expansion of H̆λ, precisely of the n-th Taylor coefficient (H̆0)(n) of H̆λ

at 0.

4. THE PROOF OF THEOREM 2.1

As is stated, this section is devoted to the proof of Theorem 2.1. Let us start
by the lower bound.

4.1. The Lower Bound

For k ∈ (2N + 1) large enough let us suppose that for any γ ∈ [− k
2 − 1, k

2 +
1] ∩ Z, we have ωγ = 0 then we get

E0
(
H D

�k
(ω)
) = inf �

(
H D

�k
(ω)
)
.

We recall that we denote by H D
�k

(ω) is the operator (1.1) restricted to D�k (ω) =
�k × ((0, Dmax) ∩ D(ω)) with Dirichlet boundary condition also on the vertical
part of the domain.

Let 0 < ε < d. We set Dε = (− k
2 , k

2 ) × (0, Dmax − ε) ⊂ D0. We have

inf �(HDε
) = π2

ρ0(Dmax − ε)2
+ π2

c0k2
= E0(ε); (4.28)

for some constant c0 such that µ0 ≤ c0 ≤ ρ0. Let us assume that for any γ ∈
[− k

2 − 1, k
2 + 1] ∩ Z, ωγ ∈ (0, ε) then we have

Dε ⊂ D�k (ω) ⊂ Dω.

So,

Hω ≤ H D
�k

(ω) ≤ HDε
,

and consequently we get

E0(Hω) ≤ E0
(
H D

�k
(ω)
) ≤ E0(ε). (4.29)
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If we take ε = 1
k2 , the Eq. (4.28) yields

E0(ε) ≤ E0 + c

k2
.

Here c = π2

ρ0
(1 + 2

D(D−1)2 ).
Using Eq. (2.11) one gets,

N (E0 + ε) ≥ 1

(2k + 1)
· P
{

E0(H�k

(
ω)
) ≤ E0 + ε

}

≥ 1

(2k + 1)
· P
{

E0
(
H D

�k
(ω)
) ≤ E0(ε)

}

= 1

(2k + 1)
· P{�k(ω) ⊂ Dε}

= 1

(2k + 1)
· P

{
∀γ ∈

[
− k

2
− 1,

k

2
+ 1

]
∩ Z; ωγ ≤ ε

}
(4.30)

= 1

(2k + 1)
· P{ω0 ∈ (0, ε)}(k+2). (4.31)

The proof is ended by taking into account assumption (A.1) and computing the

limit for ε = 1

k2
.

4.2. The Upper Bound

The proof of the upper bound is based on the use of tools stated on the
previous section and on a probabilistic technique known as the large deviation
argument.

Let H N
�k

(ω) be the operator defined by (1.1) restricted to Dω ∩ (�k ×
(0, Dmax)) with Neumann boundary conditions on the vertical parts of Dω ∩
(∂�k × (0, Dmax)) and Dirichlet boundary conditions for the remaining part. For
the choosing boundary conditions one has

H N
�k

(ω) ≤ H�k (ω). (4.32)

Lemma 4.1. There exits c > 0, K2 > 0 such that for a > 0

P

{
E0
(
H N

�k
(ω)
) ≤ E0 + a

k2

}
≤ c · e−k

(m−K2
√

a)2

c

Proof: For ψ ∈ C1
0 (− 1

2 , 1
2 ) such that ψ(0) = 1 and for any x ∈ (− 1

2 , 1
2 ) one has

0 ≤ ψ(x) ≤ 1 − |x |.
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We set

bω(x1) =
∑
γ∈�k

ωγ ψ(x1 − γ ).

Taking the same notation as in Sec. 3, we get that Dbω

λ,k having the same rate as

D0,k with smooth corners and with the property that Dbω

λ,k ⊂ Dλ,k . Indeed using

the properties of ωγ , we get that for x1 ∈ (0, 1
2 ) we have

−ω0(1 − x1) − ω1x1 ≤ −ω0(1 − |x1|)
and for x1 ∈ (− 1

2 , 0) we have

−ω0(1 + x1) + ω−1x1 ≤ −ω0(1 − |x1|).
So using the notation of Remark 3.1 one gets

fω ≤ Dmax − bω.

Thus if we note by Ebω

0 (λ, k) the first eigenvalue of the operator (1.1) restricted to
Dbω

λ,k and take into account (4.32) one gets that

E0(H N
�k

(ω)) ≥ Ebω

0 (λ, k); ∀λ ∈ (0, 1). (4.33)

Using (3.24), one gets that there exists K1 > 0 such that

d Ebω

0

dλ
(λ, k)(0) ≥ 2π3

D3
max

∫ 1
2

− 1
2

ψ(x) dx ·
(

1

|�k |
∑
γ∈�k

ωγ

)
. (4.34)

= K1 ·
⎛
⎝ 1

|�k |
∑
γ∈�k

ωγ

⎞
⎠ . (4.35)

We recall that from Proposition 3.5, we have

∣∣Ebω

0 (λ, k) − E0 − λ
(
Ebω

0

)′
(0, k)

∣∣ ≤ Kπ2

4κ2
· k2 · λ2. (4.36)

So, if we assume that for a ≤ π2 K

4
we have

Ebω

0 (λ, k) ≤ E0 + a

k2
, (4.37)

then Eqs. (4.35), (4.36) and (4.37) implies that

λ · (Ebω

0

)′
(0, k) ≤ Kπ2

4κ2
· k2 · λ2 + a

k2
.
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Tacking, λ = tκ
k2 , one gets

(
Ebω

0

)′
(0, k) ≤ Kπ2 · t

4κ
+ a

κt
; (4.38)

for any 0 ≤ t ≤ 1. Optimizing (4.38), with respect to t one gets that t0 = 2
√

a

π
√

K
< 1.

Taking into account (4.35) we get that for K3 =
√

Kπ
2κ

P

{
Ebω

0 (λ, k) ≤ E0 + a

k2

}
≤ P

{
(Ebω

0 )′(0, k) ≤ K3
√

a
}

≤ P

⎧⎨
⎩

1

(2k + 1)

∑
γ∈�k

ωγ ≤ K2 K1
√

a

⎫⎬
⎭

≤ P

⎧⎨
⎩
∣∣∣∣∣∣

1

(2k + 1)

∑
γ∈�k

ωγ − m

∣∣∣∣∣∣ ≥ m − K2 K1
√

a

⎫⎬
⎭

≤ c · e−k· (m−K2
√

a)2

c . (4.39)

The last estimation is due to a large deviation argument (6) where we take a small
such that 0 ≤ √

a ≤ m
K1·K2

.
The proof of Lemma 4.1 is now ended by taking into account (4.33) and

(4.39). �

Let us recall the following properties from that from (2.11) one deduces

N (E0 + ε) ≤ 1

2k + 1
E
(
N
(
H N

�k
(ω), E0 + ε

))
.

Using the Weyl estimate one gets that a lower bound on 1
2k+1 · N (H�N

k (ω), E0 + ε)

by K = cd (E0 + ε)
1
2 . So,

N (E0 + ε) ≤ K

∫
{ω,E0(H N

�k
(ω))≤E0+ε}

dP = K · P
{

E0
(
H N

�k
(ω)
) ≤ E0 + ε

}
.

For ε = a
k2 in Lemma 4.1, one gets

N (E0 + ε) = N

(
E0 + a

k2

)
≤ c · e− (m−K2

√
a)2√

εc .

The proof of the upper bound is then ended by taking the double logarithm of the
last equation.



Lifshitz Tails for Acoustic Waves in Random Quantum Waveguide 1111

ACKNOWLEDGEMENTS

It is a pleasure to thank F. Germinet for discussion and references on Lo-
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33. J. T. Londergan, J. P. Carini and D. P. Murdock, Binding and Scattering in Two-dimensional

Systems (Springer, Berlin, 1999).
34. I. Lifshitz, Structure of the energy spectrum of impurity bands in disordered solid solutions. Soviet

Phy. JETP 17:1159–1170 (1963).
35. H. Najar, Lifshitz tails for random acoustic operators. J. Math. Phys. 44(4):1842–1867 (2003).
36. H. Najar, Asymptotic behavior of the integrated density of states of acoustic operator with long

range random perturbations. J. Stat. Phys. 115(4):977–996 (2003).
37. H. Najar, Non-Lifshitz tails at the spectrum bottom of some random operator. submitted
38. H. Najar, 2-Dimensional localization of acoustic waves in random perturbation of periodic media.

J. Math. Ana. App. 322(I):1–17 (2006).
39. H. Najar, Non-Lifshitz tails at the spectrum bottom of some random operators. submitted
40. L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators (Springer-Verlag,

Heidelberg, 1992).
41. M. Reed and B. Simon, Methods of Modern Mathematical Physics Vol. IV: Analysis of Operators

(Academic, Press, 1978).
42. P. Stollmann, Caught by Disorder Bounded States in random Media (Birkhäuser, 2001).
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